Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
The Egyptian Journal of Bronchology ; 17(1), 2023.
Article in English | EuropePMC | ID: covidwho-2248344

ABSTRACT

Background A balanced diet and nutrition greatly influence our immune system's ability and regulate the risk and severity of infections. This review presented the possible patho-mechanisms of vitamins C and D in COVID-19 immunity. Main body Deregulation of the immune system including the decreased level of immune boosters is invariably reported in COVID-19. Vitamin C and vitamin D are among the immune boosters;homeostasis of those was found essential for fighting against the viruses, and COVID-19 is no exception. Statistical data strengthens the statements put forth on the effects of these vitamins regarding the complications, symptoms, and mortality. Short conclusion A comprehensive literature review revealed that vitamin C helps to reduce and in some cases eradicate the particular symptoms that pose major risks of COVID-19 while balanced vitamin D content in COVID-19 patients has been proved to possess a negative correlation with mortality.

2.
Rev Med Virol ; : e2340, 2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-2244340

ABSTRACT

SARS-CoV-2 and dengue virus co-infection cases have been on the rise in dengue-endemic regions as coronavirus disease 2019 (COVID-19) spreads over the world, posing a threat of a co-epidemic. The risk of comorbidity in co-infection cases is greater than that of a single viral infection, which is a cause of concern. Although the pathophysiologies of the two infections are different, the viruses have comparable effects within the body, resulting in identical clinical symptoms in the case of co-infection, which adds to the complexity. Overlapping symptoms and laboratory features make proper differentiation of the infections important. However, specific biomarkers provide precise results that can be utilised to diagnose and treat a co-infection, whether it is simply COVID-19, dengue, or a co-infection. Though their treatment is distinguished, it becomes more complicated in circumstances of co-infection. As a result, regardless of whatever infection the first symptom points to, confirmation diagnosis of both COVID-19 and dengue should be mandatory, particularly in dengue-endemic regions, to prevent health deterioration in individuals treated for a single infection. There is still a scarcity of concise literature on the epidemiology, pathophysiology, diagnosis, therapy, and management of SARS-CoV-2 and dengue virus co-infection. The epidemiology of SARS-CoV-2 and dengue virus co-infection, the mechanism of pathogenesis, and the potential impact on patients are summarised in this review. The possible diagnosis with biomarkers, treatment, and management of the SARS-CoV-2 and dengue viruses are also discussed. This review will shed light on the appropriate diagnosis, treatment, and management of the patients suffering from SARS-CoV-2 and dengue virus co-infection.

3.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1999288

ABSTRACT

While the COVID-19 pandemic takes the world by storm, dengue-endemic regions risk developing a co-epidemic in COVID-19/dengue coinfection. With both infections as causes of high morbidity rates, the potentially fatal outcomes of coinfection are even greater, and several cases are emerging, severe and moderate, showing how common it may become in certain regions. The case reported here shows a 38-year-old male patient with high-grade fever, with complaints of nausea, joint, and muscle aches, all characteristic symptoms of COVID-19 and dengue. Initially suspected of being infected with COVID-19 only, the RT-PCR test of the nasopharyngeal swab confirmed COVID-19 infection, while the positive reactivity to IgG and IgM in the Dengue Duo test revealed a dengue coinfection. Except for the persistent high fever, the Patient's symptoms were not severe, although the tests confirmed the infections to be “moderate to severe” and showed steady and rapid recovery. The tests showed some interesting results, which provided additional research opportunities. Overall, this case report illustrates the existence of coinfections in the Philippines, demonstrating the difficulty in distinguishing the two infections and the need for proper diagnosis, prevention, and management measures.

4.
Infect Genet Evol ; 103: 105338, 2022 09.
Article in English | MEDLINE | ID: covidwho-1936988

ABSTRACT

Multiple lines of evidence indicate that the male sex is a significant risk factor for severe disease and mortality due to coronavirus disease 2019 (COVID-19). However, the precise explanation for the discrepancy is currently unclear. Immunologically, the female-biased protection against COVID-19 could presumably be due to a more rapid and robust immune response to viruses exhibited by males. The female hormones, e.g., estrogens and progesterone, may have protective roles against viral infections. In contrast, male hormones, e.g., testosterone, can act oppositely. Besides, the expression of the ACE-2 receptor in the lung and airway lining, which the SARS-CoV-2 uses to enter cells, is more pronounced in males. Estrogen potentially plays a role in downregulating the expression of ACE-2, which could be a plausible biological explanation for the reduced severity of COVID-19 in females. Comorbidities, e.g., cardiovascular diseases, diabetes, and kidney disorders, are considered significant risk factors for severe outcomes in COVID-19. Age-adjusted data shows that males are statistically more predisposed to these morbidities-amplifying risks for males with COVID-19. In addition, many sociocultural factors and gender-constructed behavior of men and women impact exposure to infections and outcomes. In many parts of the world, women are more likely to abide by health regulations, e.g., mask-wearing and handwashing, than men. In contrast, men, in general, are more involved with high-risk behaviors, e.g., smoking and alcohol consumption, and high-risk jobs that require admixing with people, which increases their risk of exposure to the infection. Overall, males and females suffer differently from COVID-19 due to a complex interplay between many biological and sociocultural factors.


Subject(s)
COVID-19 , Virus Diseases , COVID-19/epidemiology , Female , Hormones , Humans , Male , Risk Factors , SARS-CoV-2 , Sex Factors
5.
Front Immunol ; 13: 863234, 2022.
Article in English | MEDLINE | ID: covidwho-1903009

ABSTRACT

Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment's safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine's safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.


Subject(s)
COVID-19 , Mucormycosis , COVID-19/prevention & control , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Fungi , Humans , Iron/metabolism , Molecular Docking Simulation , Mucormycosis/microbiology , Mucormycosis/prevention & control , SARS-CoV-2 , Vaccines, Combined , Vaccines, Subunit
6.
Immun Inflamm Dis ; 10(7): e639, 2022 07.
Article in English | MEDLINE | ID: covidwho-1894597

ABSTRACT

INTRODUCTION: Prominently accountable for the upsurge of COVID-19 cases as the world attempts to recover from the previous two waves, Omicron has further threatened the conventional therapeutic approaches. The lack of extensive research regarding Omicron has raised the need to establish correlations to understand this variant by structural comparisons. Here, we evaluate, correlate, and compare its genomic sequences through an immunoinformatic approach to understand its epidemiological characteristics and responses to existing drugs. METHODS: We reconstructed the phylogenetic tree and compared the mutational spectrum. We analyzed the mutations that occurred in the Omicron variant and correlated how these mutations affect infectivity and pathogenicity. Then, we studied how mutations in the receptor-binding domain affect its interaction with host factors through molecular docking. Finally, we evaluated the drug efficacy against the main protease of the Omicron through molecular docking and validated the docking results with molecular dynamics simulation. RESULTS: Phylogenetic and mutational analysis revealed the Omicron variant is similar to the highly infectious B.1.620 variant, while mutations within the prominent proteins are hypothesized to alter its pathogenicity. Moreover, docking evaluations revealed significant differences in binding affinity with human receptors, angiotensin-converting enzyme 2 and NRP1. Surprisingly, most of the tested drugs were proven to be effective. Nirmatrelvir, 13b, and Lopinavir displayed increased effectiveness against Omicron. CONCLUSION: Omicron variant may be originated from the highly infectious B.1.620 variant, while it was less pathogenic due to the mutations in the prominent proteins. Nirmatrelvir, 13b, and Lopinavir would be the most effective, compared to other promising drugs that were proven effective.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Host-Pathogen Interactions/genetics , Humans , Lopinavir , Molecular Docking Simulation , Phylogeny , SARS-CoV-2/genetics , Virulence/genetics
7.
Curr Microbiol ; 79(5): 127, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1739302

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 sequelae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.


Subject(s)
COVID-19 , Candidiasis , Candida/genetics , Causality , Humans , SARS-CoV-2
8.
Beni-Suef University journal of basic and applied sciences ; 11(1), 2022.
Article in English | EuropePMC | ID: covidwho-1728157

ABSTRACT

Background The novel coronavirus has embarked on a global pandemic and severe mortality with limited access for its treatments and medications. For the lack of time, research, and enough efficacy, most vaccines are underdeveloped or unreachable to society. However, many recent studies suggest various alternative, complementary remedies for COVID-19, which are functional foods. This review provides an overview of how functional foods can play a great role through modulating the host immune system, generating antiviral activities, and synthesizing biologically active agents effective against the coronavirus. Main body This review article summarizes the natural defense mechanisms in tackling SARS-CoV-2 alongside conventional therapeutic options and their corresponding harmful side effects. By analyzing bioactive components of functional foods, we have outlined its different contributions to human health and its potential immunomodulatory and antiviral properties that can enhance resistivity to viral infection. Moreover, we have provided a myriad of accessible and cost-effective functional foods that could be further investigated to target specific key symptoms of COVID-19 infections. Finally, we have found various functional foods with potent bioactive compounds that can inhibit or prevent COVID-19 infections and disease progression. Short conclusion Numerous functional foods can help the body fight COVID-19 through several mechanisms such as the reduced release of pro-inflammatory cytokines, reduced expression of ACE2 receptors in cells, and inhibiting essential enzymes in SARS-CoV-2.

9.
Beni Suef Univ J Basic Appl Sci ; 11(1): 20, 2022.
Article in English | MEDLINE | ID: covidwho-1686040

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) has become a serious global health issue, especially for people with pre-existing health conditions. Patients dealing with asthma are presumed to be at higher risk as COVID-19 may cause severe respiratory distress. MAIN BODY: From the initial stage of the pandemic, several clinical trials and studies have assessed the association between COVID-19 and asthma; however, no significant association was reported. This may be due to the fact that most of the asthma cases remained undiagnosed and overlapping respiratory features make it difficult to differentiate between these two diseases. The pathomechanism of the conditions and the immune response generated in response to the conditions suggest that the presence of any of the conditions is very likely to influence the presence or severity of the other condition. So far, no specific treatments are known for COVID-19; however, the use of plasma therapy and broad-spectrum antiviral drugs during the initial phase of the pandemic and widespread vaccination during the latter phase has given positive outcomes in reducing COVID-19 cases as well as disease severity. SHORT CONCLUSION: Taking asthma as an increased risk factor for COVID-19 morbidity, this article aims to provide comprehensive insights into the risk and proper management of asthma patients during this COVID-19 pandemic. The common medications of asthma patients suppress their respiratory immune response that might facilitate cytokine storm in COVID-19 patients. Similarly, there are risks of viral-induced asthma exacerbations. Besides, different social issues such as shortage of medicines, SDOH, and delayed clinical trials put asthma patients through inconvenience. The primary focus at this point should be to reduce probable asthma attacks and severity to prevent hospitalization of asthma patients. Moreover, for better management of asthma patients maintaining an asthma action plan and healthy lifestyle, ensuring a nutritious diet, and developing self-management interventions can play a crucial role.

10.
Mol Biol Rep ; 49(1): 747-754, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1491296

ABSTRACT

COVID-19-associated-mucormycosis, commonly referred to as the "Black Fungus," is a rare secondary fungal infection in COVID-19 patients prompted by a group of mucor molds. Association of this rare fungal infection with SARS-CoV-2 infection has been declared as an endemic in India, with minor cases in several other countries around the globe. Although the fungal infection is not contagious like the viral infection, the causative fungal agent is omnipresent. Infection displays an overall mortality rate of around 50%, with many other secondary side effects posing a potential threat in exacerbating COVID-19 mortality rates. In this review, we have accessed the role of free iron availability in COVID-19 patients that might correlate to the pathogenesis of the causative fungal agent. Besides, we have analyzed the negative consequences of using immunosuppressive drugs in encouraging this opportunistic fungal infection.


Subject(s)
COVID-19/complications , Hyperferritinemia , Immunosuppression Therapy/adverse effects , Mucormycosis , Fungi/isolation & purification , Fungi/pathogenicity , Humans , Hyperferritinemia/complications , Hyperferritinemia/microbiology , Immunosuppressive Agents/adverse effects , India/epidemiology , Iron/metabolism , Mortality , Mucormycosis/epidemiology , Mucormycosis/etiology , Mucormycosis/microbiology , Opportunistic Infections/epidemiology , Opportunistic Infections/microbiology , Rhizopus oryzae/isolation & purification , Rhizopus oryzae/pathogenicity
11.
Mol Biol Rep ; 49(1): 567-576, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1465892

ABSTRACT

Pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced COVID-19 implied the presence of excessive proinflammatory cytokines and chemokines in patients causing significant morbidity and mortality. To diminish systemic hyper inflammation, a few physicians and researchers have utilized corticosteroids. Corticosteroid implementation has increased after the publication of interim guidelines regarding corticosteroid use in COVID-19 patients by WHO, despite the remaining controversies regarding long-term side effects and disease progression capability of corticosteroids. In different studies, the implementation of corticosteroids on COVID-19 patients revealed controversial results, which require further intensive research. This review will present the current outcomes and possibilities of using corticosteroids to treat COVID-19 patients.


Subject(s)
Adrenal Cortex Hormones , COVID-19 Drug Treatment , Adrenal Cortex Hormones/adverse effects , Adrenal Cortex Hormones/therapeutic use , Chemokines , Cytokine Release Syndrome/drug therapy , Cytokines , Humans , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Inflammation/drug therapy , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
12.
Mol Biol Rep ; 48(4): 3863-3869, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1198481

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) has become a severe health issue, especially to the patients who develop silent hypoxia condition after SARS-CoV-2 infection. Due to the lack of dyspnoea and extremely low oxygen saturation level, these patients are at exceptionally higher risk. Although the prevalence of silent hypoxia in COVID-19 patients has been evident in several cases, the underlying pathomechanism behind this condition is still unclear. Silent hypoxia in SARS-CoV-2 infected patients can be diagnosed with the help of a pulse oximeter, blood gas levels, and a 6-min walking test. While the clinicians and researchers figure out the exact reason for this phenomenon, the patients must be under strict day-to-day monitoring. In this article, we aim to provide comprehensive insights into the underlying symptoms, mechanism, and possible factors behind the occurrence of silent hypoxia among COVID-19 patients.


Subject(s)
COVID-19/diagnosis , COVID-19/pathology , Angiotensin-Converting Enzyme 2/metabolism , Blood Gas Analysis , COVID-19/immunology , COVID-19/metabolism , Humans , Hypoxia/diagnosis , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia/virology , Hypoxia-Inducible Factor 1/metabolism , Oximetry , Practice Guidelines as Topic
13.
Front Public Health ; 8: 571689, 2020.
Article in English | MEDLINE | ID: covidwho-965338

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a global health emergency of unprecedented proportions. Countries around the world have taken extraordinary steps to control the disease. The preventive measures face challenges in low and lower middle income countries (LICs and LMICs). Especially the marginalized communities, e.g., women are the hardest hit of the virus. This study took Bangladesh as a representative LMIC and aimed to determine the level of knowledge, perception, attitude, and preparedness related to COVID-19 among the adult women in the country. Using a comprehensive questionnaire, we channeled a cross-sectional study among adult women in Bangladesh. Participant's self-reported data on the knowledge, attitude, and preparedness were tabulated and analyzed using suitable statistical tools. A total of 1,869 adults from 61 districts of Bangladesh took part in this study. Ninety seven percentage of the participants claimed to have heard of COVID-19 before it arrived in Bangladesh. Regarding the general knowledge related to COVID-19's causal agent, symptoms, and treatment, the positive response rate was nearly 80%, with a mean of 10.68 ± 1.72. Younger and educated women had better knowledge levels compared to the older and lower-educated participants (p < 0.01). More efforts are required to educate women with older age and lower socioeconomic status. An overall positive attitude and perception were observed, although a significant proportion of the participants opined that the Government's efforts in controlling the outbreak were not adequate. Although the participants had a satisfactory level of knowledge and a positive attitude in adopting preventive measures against COVID-19, greater efforts are needed from the healthcare authorities and Government.


Subject(s)
COVID-19 , Health Knowledge, Attitudes, Practice , Perception , Adult , Bangladesh , COVID-19/diagnosis , COVID-19/transmission , Cross-Sectional Studies , Developing Countries , Female , Humans , Poverty , SARS-CoV-2/isolation & purification , Self Report , Surveys and Questionnaires
14.
Int Microbiol ; 24(1): 19-24, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-959301

ABSTRACT

Coronaviruses have marked their significant emergence since the twenty-first century with the outbreaks of three out of the seven existing human coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. These viruses have not only acquired large-scale transmission during their specified outbreak period, but cases of MERS-CoV still remain active, although there is only limited transmission. While, on the other hand, SARS-CoV-2 continues to remain a rising threat to global public health. The recent novel coronavirus, SARS-CoV-2, responsible for the ongoing coronavirus disease 2019 (COVID-19), emerged during December 2019 in Wuhan, China, and has repeatedly raised questions about its characteristic variability. Despite belonging to the same family, SARS-CoV-2 has proven to be quite difficult to control and contain in terms of transmissibility, leading to around 19.8 million reported cases and more than 730,000 deaths of individuals worldwide. Here, we discuss how SARS-CoV-2 differs from its two other related human coronaviruses in terms of genome composition, site of infection, and transmissibility, among several other notable aspects-all indicating to the possibility that it is these variations in addition to other unknowns that are contributing to this virus' differing deadly pattern.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Animals , COVID-19/epidemiology , Coronavirus/classification , Coronavirus/genetics , Coronavirus/physiology , Coronavirus Infections/virology , Humans , Pandemics , SARS-CoV-2/genetics
15.
Comput Biol Chem ; 90: 107413, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-907157

ABSTRACT

As the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), rages across the world, killing hundreds of thousands and infecting millions, researchers are racing against time to elucidate the viral genome. Some Bangladeshi institutes are also in this race, sequenced a few isolates of the virus collected from Bangladesh. Here, we present a genomic analysis of these isolates. The analysis revealed that SARS-CoV-2 isolates sequenced from Dhaka and Chittagong were the lineage of Europe and India, respectively. Our analysis identified a total of 42 mutations, including three large deletions, half of which were synonymous. Most of the missense mutations in Bangladeshi isolates found to have weak effects on the pathogenesis. Some mutations may lead the virus to be less pathogenic than the other countries. Molecular docking analysis to evaluate the effect of the mutations on the interaction between the viral spike proteins and the human ACE2 receptor, though no significant difference was observed. This study provides some preliminary insights into the origin of Bangladeshi SARS-CoV-2 isolates, mutation spectrum and its possible pathomechanism, which may give an essential clue for designing therapeutics and management of COVID-19 in Bangladesh.


Subject(s)
SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Bangladesh , Binding Sites , COVID-19/virology , Genes, Viral , Genome, Viral , Humans , Molecular Docking Simulation , Mutation , Phylogeny , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
16.
Int J Biol Macromol ; 163: 1787-1797, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-773658

ABSTRACT

The pandemic prevalence of COVID-19 has become a very serious global health issue. Scientists all over the world have been seriously attempting in the discovery of a drug to combat SARS-CoV-2. It has been found that RNA-dependent RNA polymerase (RdRp) plays a crucial role in SARS-CoV-2 replication, and thus could be a potential drug target. Here, comprehensive computational approaches including drug repurposing and molecular docking were employed to predict an effective drug candidate targeting RdRp of SARS-CoV-2. This study revealed that Rifabutin, Rifapentine, Fidaxomicin, 7-methyl-guanosine-5'-triphosphate-5'-guanosine and Ivermectin have a potential inhibitory interaction with RdRp of SARS-CoV-2 and could be effective drugs for COVID-19. In addition, virtual screening of the compounds from ZINC database also allowed the prediction of two compounds (ZINC09128258 and ZINC09883305) with pharmacophore features that interact effectively with RdRp of SARS-CoV-2, indicating their potentiality as effective inhibitors of the enzyme. Furthermore, ADME analysis along with analysis of toxicity was also undertaken to check the pharmacokinetics and drug-likeness properties of the two compounds. Comparative structural analysis of protein-inhibitor complexes revealed that the amino acids Y32, K47, Y122, Y129, H133, N138, D140, T141, S709 and N781 are crucial for drug surface hotspot in the RdRp of SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Betacoronavirus/enzymology , COVID-19 , Coronavirus Infections/virology , Fidaxomicin/chemistry , Fidaxomicin/pharmacology , Humans , Ivermectin/chemistry , Ivermectin/pharmacology , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/virology , Rifabutin/chemistry , Rifabutin/pharmacology , Rifampin/analogs & derivatives , Rifampin/chemistry , Rifampin/pharmacology , SARS-CoV-2 , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL